Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Environ Manage ; 356: 120544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471323

RESUMO

Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and ß-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.


Assuntos
Antibacterianos , Água Potável , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/análise , Nitritos/análise , Resistência Microbiana a Medicamentos/genética , Inibidores da Enzima Conversora de Angiotensina/análise , Nitrogênio/análise
2.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501864

RESUMO

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Assuntos
Microbiota , Microbiota/genética , Agricultura , Solo/química , Nitrogênio/análise , Produtos Agrícolas/metabolismo , Desenvolvimento Vegetal
3.
ISME Commun ; 4(1): ycae017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38481578

RESUMO

Recent metagenomic advancements have offered unprecedented insights into soil viral ecology. However, it remains a challenge to select the suitable metagenomic method for investigating soil viruses under different environmental conditions. Here, we assessed the performance of viral size-fraction metagenomes (viromes) and total metagenomes in capturing viral diversity from hypersulfidic soils with neutral pH and sulfuric soils with pH <3.3. Viromes effectively enhanced the sequencing coverage of viral genomes in both soil types. Viomes of hypersulfidic soils outperformed total metagenomes by recovering a significantly higher number of viral operational taxonomic units (vOTUs). However, total metagenomes of sulfuric soils recovered ~4.5 times more vOTUs than viromes on average. Altogether, our findings suggest that the choice between viromes and total metagenomes for studying soil viruses should be carefully considered based on the specific environmental conditions.

4.
Environ Int ; 185: 108511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382404

RESUMO

Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.


Assuntos
Microbiota , Sorghum , Microbiologia do Solo , Agricultura , Solo , Grão Comestível
5.
Sci Total Environ ; 921: 171227, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402820

RESUMO

Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.


Assuntos
Amônia , Solo , Solo/química , Oxirredução , Bactérias , Nitrificação , Filogenia , Archaea
6.
J Hazard Mater ; 465: 133207, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103300

RESUMO

Addressing global warming necessitates innovative strategies in fossil fuel management. This study evaluates lignite, a low-rank coal with limited calorific value, exploring applications beyond its use as fuel. Utilizing Pt/TiO2 catalytic oxidation, the research aims to enhance the cadmium adsorption capacity of lignite in wastewater. Lignite, treated with 0.5% Pt/TiO2 at 125 °C for 2 h, demonstrated a threefold increase in cadmium adsorption capacity. Characterization using TGA-DSC confirmed the modification process as exothermic and self-sustainable. Spectroscopic analysis and Boehm titration revealed significant alterations in pore structure, surface area, and oxygen-containing functional groups, emphasizing the effectiveness of catalytic oxidation. Adsorption mechanisms such as complexation, cation exchange, and cation-π interactions were identified, enhancing Cd adsorption. Techniques, including the d-band model, H2-TPR, and O2-TPD, indicated that dissociative adsorption of molecular O2 and the subsequent generation of reactive oxygen species introduced additional oxygen-containing functional groups on the lignite surface. These findings provide essential strategies for the alternative use of lignite in environmental remediation, promoting sustainable resource utilization and enhancing cost-effectiveness in remediation processes. ENVIRONMENTAL IMPLICATION: This study innovates in using lignite to reduce cadmium (Cd) contamination in wastewater. Employing Pt/TiO2 catalytic oxidation, lignite is transformed, enhancing its cadmium adsorption capacity. This process, being exothermic, contributes to decreased energy consumption. The approach not only mitigates the hazardous impacts of cadmium but also aligns with sustainability by reducing greenhouse gas emissions and energy use, showcasing a multifaceted environmental advancement.

7.
ISME J ; 17(12): 2182-2189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794244

RESUMO

Understanding how antibiotic resistance emerges and evolves in natural habitats is critical for predicting and mitigating antibiotic resistance in the context of global change. Bacteria have evolved antibiotic production as a strategy to fight competitors, predators and other stressors, but how predation pressure of their most important consumers (i.e., protists) affects soil antibiotic resistance genes (ARGs) profiles is still poorly understood. To address this gap, we investigated responses of soil resistome to varying levels of protistan predation by inoculating low, medium and high concentrations of indigenous soil protist suspensions in soil microcosms. We found that an increase in protistan predation pressure was strongly associated with higher abundance and diversity of soil ARGs. High protist concentrations significantly enhanced the abundances of ARGs encoding multidrug (oprJ and ttgB genes) and tetracycline (tetV) efflux pump by 608%, 724% and 3052%, respectively. Additionally, we observed an increase in the abundance of numerous bacterial genera under high protistan pressure. Our findings provide empirical evidence that protistan predation significantly promotes antibiotic resistance in soil bacterial communities and advances our understanding of the biological driving forces behind the evolution and development of environmental antibiotic resistance.


Assuntos
Genes Bacterianos , Solo , Animais , Comportamento Predatório , Microbiologia do Solo , Bactérias/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Eucariotos/genética
8.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37838473

RESUMO

Soil invertebrates contribute significantly to vital ecosystem functions such as the breakdown of organic matter and cycling of essential nutrients, but our knowledge of their large-scale distribution in agricultural systems is limited, which hinders our ability to robustly predict how they will respond to future global change scenarios. Here, we employed metabarcoding analysis of eukaryotic 18S rRNA genes to examine the diversity and community composition of invertebrates in 528 sorghum rhizosphere and bulk soils, collected from 53 experimental field sites across China. Our results revealed that Nematoda, Arthropoda and Annelida were the dominant soil invertebrate groups in agroecosystems. Among all the climatic and soil parameters we examined, precipitation seasonality (i.e. the irregular distribution of precipitation during a normal year) had the strongest relationship with the richness of soil invertebrates, with an increase in soil invertebrate richness predicted with increasing precipitation seasonality. Mean annual precipitation and soil pH were the most important predictors of soil invertebrate community structure, with numerous invertebrate phylotypes showing either significantly positive or negative relationships with these two variables. Our findings suggest that shifts in precipitation patterns and soil pH, induced by future climate change and agricultural practices, will have important consequences for the distribution of soil invertebrate communities, with implications for agricultural ecosystem sustainability.


Assuntos
Ecossistema , Nematoides , Animais , Solo/química , Nematoides/genética , Mudança Climática , Concentração de Íons de Hidrogênio , Microbiologia do Solo
9.
Appl Environ Microbiol ; 89(9): e0080723, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671870

RESUMO

Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.


Assuntos
Bactérias , Áreas Alagadas , Oxirredução , Nitrificação , Amônia , China , Archaea , Filogenia
10.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1547-1554, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37694417

RESUMO

Root-associated fungi play a vital role in maintaining nutrient absorption and health of host plants. To compare the responses of root-associated fungal community structures to nitrogen (N) and/or phosphorus (P) additions across differential mycorrhizal types, we collected roots of nine plant species belonging to three mycorrhizal types (arbuscular mycorrhiza, ectomycorrhiza, and ericoid mycorrhiza) under control and N and/or P addition treatments from a subtropical forest, and detected the diversity and community composition of fungi inhabiting roots through the high-throughput sequencing technique. The results showed that root-associated fungal communities of all nine plant species were mainly composed of Basidiomycota and Ascomycota. The relative abundance of Ascomycota and Basidiomycota was significantly lower and higher under the P addition than that under control, respectively. The relative abundance of Ascomycota of ericoid mycorrhizal trees was significantly higher than those of arbuscular mycorrhizal and ectomycorrhizal trees, while the relative abundance of Basidiomycota was significantly lower than the other two mycorrhizal types. Compared with the control, P addition significantly reduced the α-diversity and changed community composition of root-associated fungi across different mycorrhizal plant types, while no effect of N addition or mycorrhizal type was observed. Compared with the control and N addition treatments, NP addition caused root-associated fungal communities of all plants becoming integrally divergent. In addition, the fungal communities of ectomycorrhizal mycorrhizal trees became apparently convergent in comparison with those of arbuscular and ericoid mycorrhizal trees under the NP addition. Collectively, our results highlighted that P was a critical factor influencing community structures of tree root-associated fungi in subtropical forest soils. This study would enhance our understanding of the responses and maintenance mechanisms of plant root-associated fungal diversity under global environmental changes in the subtropical region.


Assuntos
Micobioma , Micorrizas , Nitrogênio , Florestas , Árvores , Fósforo
11.
Front Microbiol ; 14: 1162119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138638

RESUMO

Screening high-tolerant microorganisms to cadmium (Cd) and revealing their bio-obstruction mechanism could be significant for Cd regulation from farmland to the food chain. We examined the tolerance and bio-removal efficiency of Cd ions of two bacterial strains, Pseudomonas putida 23483 and Bacillus sp. GY16, and measured the accumulation of Cd ions in rice tissues and its different chemical forms in soil. The results showed that the two strains had high tolerance to Cd, but the removal efficiency was decreased successively with increasing Cd concentrations (0.05 to 5 mg kg-1). Cell-sorption accounted for the major proportion of Cd removal compared with excreta binding in both strains, which was conformed to the pseudo-second-order kinetics. At the subcellular level, Cd was mostly taken up by the cell mantle and cell wall, and only a small amount entered into the cytomembrane and cytoplasmic with time progressed (0 to 24 h) in each concentration. The cell mantle and cell wall sorption decreased with increasing Cd concentration, especially in the cytomembrane and cytoplasmic. The scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis verified that Cd ions were attached to the cell surface, and the functional groups of C-H, C-N, C=O, N-H, and O-H in the cell surface may participate in cell-sorption process tested by the FTIR analysis. Furthermore, inoculation of the two strains significantly decreased Cd accumulation in rice straw and grain but increased in the root, increased Cd enrichment ratio in root from soil, decreased Cd translocation ratio from root to straw and grain, and increased the Cd concentrations of Fe-Mn binding form and residual form in rhizosphere soil. This study highlights that the two strains mainly removed Cd ions in solution through biosorption and passivated soil Cd as Fe-Mn combined form ascribe to its characteristics of manganese-oxidizing, eventually achieving bio-obstruction of Cd from soil to rice grain.

12.
Ying Yong Sheng Tai Xue Bao ; 34(3): 639-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087646

RESUMO

We conducted a nitrogen (N) and phosphorus (P) addition experiment in Qianjiangyuan National Park in 2015, to investigate the response of ammonia-oxidizing microorganisms and denitrifying microorganisms. There were four treatments, including N addition (N), P addition (P), NP, and control (CK). Soil samples were collected in April (wet season) and November (dry season) of 2021. The abundance of amoA gene of ammonia-oxidizing microorganisms (i.e., ammonia-oxidizing archaea, AOA; ammonia-oxidizing bacteria, AOB; comammox) and denitrifying microbial genes (i.e., nirS, nirK, and nosZ) were determined using quantitative PCR approach. The results showed that soil pH was significantly decreased by long-term N addition, while soil ammonium and nitrate contents were significantly increased. Soil available P and total P contents were significantly increased with the long-term P addition. The addition of N (N and NP treatments) significantly increased the abundance of AOB-amoA gene in both seasons, and reached the highest in the N treatment around 8.30×107 copies·g-1 dry soil. The abundance of AOA-amoA gene was significantly higher in the NP treatment than that in CK, with the highest value around 1.17×109 copies·g-1 dry soil. There was no significant difference in N-related gene abundances between two seasons except for the abundance of comammox-amoA. Nitrogen addition exerted significant effect on the abundance of AOB-amoA, nirK and nosZ genes, especially in wet season. Phosphorus addition exerted significant effect on the abundance of AOA-amoA and AOB-amoA genes in both seasons, but did not affect denitrifying gene abundances. Soil pH, ammonium, nitrate, available P, and soil water contents were the main factors affecting the abundance of soil N-related functional genes. In summary, the response of soil ammonia-oxidizing microorganisms and denitrifying microorganisms was more sensitive to N addition than to P addition. These findings shed new light for evaluating soil nutrient availability as well as their response mechanism to global change in subtropical forests.


Assuntos
Compostos de Amônio , Bactérias , Bactérias/genética , Amônia , Fósforo , Nitratos , Oxirredução , Microbiologia do Solo , Archaea/genética , Florestas , Solo/química
14.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945103

RESUMO

Deciphering the local diversity and community composition of plant-associated microorganisms is crucial to predict their ecological functions in forest ecosystems. The differences in microbial diversity and community composition between the aboveground and belowground tree compartments remain largely unknown. Here, we examined bacterial communities in the leaf surface (phyllosphere) and root-associated (root and rhizospheric soil) habitats of 13 tree species. Bacterial richness substantially differed across the three compartments, with the highest value observed in rhizospheric soil. Tree species exerted a significant effect on α-diversity of leaf- and soil- but not root-inhabiting bacteria. Bacterial communities were distinct across habitats and were significantly more divergent in leaf- than in root-associated habitats. Leaf nutrients and soil pH and NH4+-N were the main factors regulating leaf- and root-related community composition, respectively. This study highlights that host selection effects on bacterial community structure were more prominent in aboveground than in belowground habitats. Our findings contribute to a better understanding of the effect of compartments and subtropical tree species on microbial diversity, with crucial implications for sustainable forest plantation management.


Assuntos
Ecossistema , Árvores , Solo/química , Plantas , Bactérias/genética , Microbiologia do Solo
15.
Nat Commun ; 14(1): 1706, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973286

RESUMO

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Assuntos
Cidades , Ecossistema , Internacionalidade , Parques Recreativos , Poluentes do Solo , Solo , Microbiota , Fatores Socioeconômicos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Plásticos
16.
Environ Microbiol Rep ; 15(4): 298-307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992636

RESUMO

Protists occupy multiple trophic positions in soil food webs and significantly contribute to organic matter decomposition and biogeochemical cycling. Protists can ingest bacteria and fungi as main food sources while being subjected to predation of invertebrates, but our understanding of how bottom-up and top-down regulations structure protists in natural soil habitats is limited. Here, we disentangle the effects of trophic regulations to the diversity and structure of soil protists in natural settings across northern and eastern Australia. Bacterial and invertebrate diversity were identified as important drivers of the diversity of functional groups of protists. Moreover, the compositions of protistan taxonomic and functional groups were better predicted by bacteria and fungi, than by soil invertebrates. There were strong trophic interconnections between protists and bacteria in multiple organismic network analysis. Altogether, the study provided new evidence that, bottom-up control of bacteria played an important role in shaping the soil protist community structure, which can be derived from feeding preferences of protists on microbial prey, and their intimate relationships in soil functioning or environmental adaptation. Our findings advance our knowledge about the impacts of different trophic groups on key soil organismic communities, with implications for ecosystem functions and services.


Assuntos
Ecossistema , Solo , Eucariotos , Bactérias/genética , Cadeia Alimentar , Fungos/genética , Microbiologia do Solo
17.
Ying Yong Sheng Tai Xue Bao ; 34(1): 25-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799373

RESUMO

Large proportion of natural forest has been transformed into plantations in subtropical regions, with consequences on forest ecosystem structure and function. In order to understand the responses of two nitrite reducing genes (nirK and nirS) in N2O production to forest conversion, we collected soil samples from Castanopsis carlesii natural forest, Cunninghamia lanceolata plantation and Pinus massoniana plantation and examined the abundance of nirK and nirS genes in soils and aggregates. Results showed that forest conversion increased soil pH, while decreased soil ammonium content. Forest conversion did not influence the mass proportion of soil aggregates. The abundance of nirK and nirS genes varied in aggregates with different particle sizes. The abundance of nirK and nirS genes was the highest in small macraoaggregates and the lowest in the silt-clay particles. Moreover, the abundance of nirK was significantly higher than that of nirS in soils of all forest types, indicating that nirK dominated in the acidic forest soils. Conversion of natural forest to plantations significantly increased the abundance of nirK and nirS genes in the bulk soil and aggregates, indicating that forest conversion would be beneficial for the growth of microorganisms bearing nirK and nirS genes, which might be associated with the increases of soil pH. Taken together, conversion of natural forest to C. lanceolata plantation or P. massoniana plantation significantly increased the abundance of nirK and nirS in soils and aggregates, but did not affect the mass proportions of aggregates.


Assuntos
Nitritos , Solo , Solo/química , Ecossistema , Florestas , Argila , Microbiologia do Solo
18.
Microorganisms ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838227

RESUMO

Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.

19.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631668

RESUMO

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Assuntos
Ecossistema , Solo , Humanos , Parques Recreativos , Biodiversidade , Plantas
20.
Microb Ecol ; 85(1): 209-220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034141

RESUMO

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.


Assuntos
Nitrificação , Áreas Alagadas , Oxirredução , Bactérias , Amônia , Solo/química , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...